FD/ND, Low-V Fit, and ND-Location

- Flux(Ev), i.e. Shape, determined using Low-v Technique with HiResMnu-ND Default: ND@1000m FD @ 1300km
- Farther the ND, closer the ND-flux to the FD
 - Closer the ND, higher the flux at ND & cheaper will be the ND-hall
 - How well can we predict the FD/ND?
 - ND at 500m, 750m, 1000m, 1500m, 2000m
- Fitted the Mock-data at ND and predict FD/ND

√
V
µ

& Anti-Vμ

→ND at 2000m: Vμ

№ND at 1500m: **V**μ

ND at 1000m: Vµ (Default)

ND at 500m: Vμ

(IND at 750m: Vµ similar)

♣√ND at 1000m:Anti-Vμ

→ ND at 500m: Anti-Vμ

My Preliminary Conclusions on the ND-Location

We get 4-times the Nu-flux at 500m than at 1000m

Low-v0 EP-Fit to the ND mock-data shows that the prediction for FD/ND when ND is at 500m is as good as when ND is at 1000m

Up to comments/questions/critiques, the study shows that we should build the ND-hall as close to the decay region as feasible

Backup Slides

Relative Flux Determination using <u>Low-v Technique</u>

NOMAD, NuTeV, MINOS..

$$\mathcal{N}(E_{\nu}: E_{HAS} < \nu^{\circ}) = C \Phi(E_{\nu}) *$$

$$\left[1 + \left(\frac{\nu^o}{E_{\nu}}\right) \frac{3}{A} + \left(\frac{\nu^o}{E_{\nu}}\right) \frac{2}{A} + \mathcal{O}\left(\frac{\nu^o}{E_{\nu}}\right)^3\right]$$

$$V \Rightarrow \frac{3}{A} \sim 0.3$$
; $\overrightarrow{V} \Rightarrow \frac{3}{A} \sim -7.7$ \Leftarrow [..] ~ 0.97 for Ev=5

> Systematically robust

> voxEv = Eu critical measureable

$$\frac{\partial \mathcal{L} \cdot \mathcal{P}}{\partial x_F} = \int \frac{\pi / \kappa}{\pi / \kappa} \int \frac{d\sigma}{dx_F} \frac{d\sigma}{dR_F^2} = \int (x_F) g(P_F) + \int (x_F, P_F) \frac{d\sigma}{dx_F} \frac{d\sigma}{dR_F^2} = \int (x_F) g(P_F) \frac{d\sigma}{dx_F} \frac{d\sigma}{dR_F^2} \frac{d\sigma}{dR_F^2} = \int (x_F) g(P_F) \frac{d\sigma}{dx_F} \frac{d\sigma}{dR_F^2} \frac{d\sigma}{dR_F^2}$$

Sow-V εΡ of $μ_{\underline{\nu}}(\bar{\nu}_{\underline{\nu}})$ Flux

Get ε.P. of $π^{\pm}$, $κ^{\pm}$ # Allows predictions at NS, #D, #NS

Gields $π^{\pm} \rightarrow μ^{\pm}$; $κ^{\pm} \rightarrow \bar{\nu}_{e}$ # functional form constraint allows flux prediction to $E_{V} \sim V^{0}$ # Absorbs errors in beam-simulation parameters into "prod? - σ" \Rightarrow "EFFECTIVE"

Systematics

2 Variation in v°-correction

2 Composition of cc: QE, Res, Dis

2 Junctional form

2 Beam - Transport — Syst. at 500m?

2 Gnergy scale: Eu, Enas